Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR.
نویسندگان
چکیده
Dendritic cell specific intracellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN), a C-type lectin present on the surface of dendritic cells, mediates the initial interaction of dendritic cells with T cells by binding to ICAM-3. DC-SIGN and DC-SIGNR, a related receptor found on the endothelium of liver sinusoids, placental capillaries, and lymph nodes, bind to oligosaccharides that are present on the envelope of human immunodeficiency virus (HIV), an interaction that strongly promotes viral infection of T cells. Crystal structures of carbohydrate-recognition domains of DC-SIGN and of DC-SIGNR bound to oligosaccharide, in combination with binding studies, reveal that these receptors selectively recognize endogenous high-mannose oligosaccharides and may represent a new avenue for developing HIV prophylactics.
منابع مشابه
Geometry and Adhesion of Extracellular Domains of DC-SIGNR Neck Length Variants Analyzed by Force–Distance Measurements
Force-distance measurements have been used to examine differences in the interaction of the dendritic cell glycan-binding receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR (L-SIGN) with membranes bearing glycan ligands. The results demonstrate that upon binding to membrane-anchored ligand, DC-SIGNR undergoes a conformational change similar to that previously observed f...
متن کاملWest Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivi...
متن کاملAutonomous Tetramerization Domains in the Glycan-binding Receptors DC-SIGN and DC-SIGNR
Multivalent binding of glycans on pathogens and on mammalian cells by the receptors DC-SIGN (CD209) and DC-SIGNR (L-SIGN, CD299) is dependent on correct disposition of the C-type carbohydrate-recognition domains projected at the C-terminal ends of necks at the cell surface. In the work reported here, neck domains of DC-SIGN and DC-SIGNR expressed in isolation are shown to form tetramers in the ...
متن کاملHigh glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in di...
متن کاملDC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin) and DC-SIGN-related (DC-SIGNR): friend or foe?
C-type lectins are calcium-dependent carbohydrate-binding proteins with a wide range of biological functions, many of which are related to immunity. DC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin, where ICAM is intercellular adhesion molecule) is a recently described mannose-specific C-type lectin expressed by dendritic cells. Dendritic cells are potent antigen-presenting cells cap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 294 5549 شماره
صفحات -
تاریخ انتشار 2001